Tag Archives: Arduino

nanoBeacon: a simple personal CW beacon

There are times when you wonder if your receiver and antenna are really working as they should. The band is dead, or empty, it’s the middle of the day, the D-Layer is sponging up every radio frequency excitation. Perhaps you can hear a few signals, but they are fleeting — and you need a steady and predictable signal source for a proper test. An RF signal generator will give you a steady carrier, but there are times when you’d prefer to have a true CW beacon to tune onto. This simple, general purpose multiband CW beacon can be run up on the frequency (or frequencies) of your choice, is powered on a 9V transistor radio battery, and can moved to attenuate to the desired signal level, for radio receiver system testing purposes.

Continue reading
Tagged , ,

Scratch-built 8-band HF SSB/CW transceiver (EI9GQ) – Part 2 – Receiver completion

There’s a reason why most homebrew transceiver kits and scratch-built projects are monoband and single mode — theres a chance you’ll finish it, or at least, get it working for a while. Building a multiband HF transceiver is a big job, as any homebrewer who has attempted it will tell you. It may take years.

Continue reading
Tagged , , , , ,

20 meters, 200mW & 12,000 miles: WSPR magic!

Weak Signal Propagation Reporter is a global radio propagation monitoring and reporting network comprised of thousands of low power beacons operating on the amateur radio bands. WSPR beacons can be detected from the lowest of Medium Wave frequencies (137kHz) all the way through the HF spectrum (all the bands from 160m to 10m are popular) to the VHF bands, 50 and 144MHz. WSPR receivers decode the tiny beacon packets and upload them to a central database, at WSPRNet.org, where anyone can literally ‘see’ the propagation paths that are currently open.

Continue reading
Tagged , , , , , , ,

Universal VFO Controller (ATMega328 & si5351)

This board is a universal radio project controller, with an ATMega328P(U) microcontroller and lots of options. The intention was for it to become a basic building block in transceivers, receivers, transmitters, signal generators, anywhere you need either a digital controller, one to three clocks, or both. The board has headers for the common si5351 breakout board, available from Adafruit or as a .CN clone, and a 16×2 HD7044 Liquid Crystal Display using the standard 14+2 parallel data header (+2 for backlight). It brings out all of the available digital IOs (D2..D13), analogue inputs (ADC) A0..A5), as well as headers for a 12V supply, and access to the regulated 7805 5v output, access to the LCD backlight in case you wish to take control of this in software, and an FTDI-compatible USB-to-serial programming board.

Continue reading
Tagged , ,

Digi-chirp! Digital synthesis of ‘nostalgic’ CW

The bottom ends of 80, 40 and 20m are not what they used to be. For starters, the busiest part is the digital segment where computers talk to computers – listening to this segment is like eavesdropping on a bunch of dialup bulletin boards having a party in 1983. Then there’s the CW segment. When there are CW signals to listen to, all are frequency stable, chirp and click-free, generated by more computers from deep inside rigs that are more computer than radio. These shining examples of digital CW perfection have traded efficiency and quality… for personality.

Continue reading
Tagged , , , , ,

SP-9: A Compact Five band SSB/CW QRP Transceiver

‘Summit Prowler 9’ is a homebrew five band SSB/CW 5 watt transceiver designed for and tested on the summits near Melbourne Australia. This project further developed my interest and ideas on the right mix of features and design choices in a moderately compact case that any keen radio builder could reproduce in the home workshop with modest equipment. The transceiver project was completed over an 18 month period to April 2021.

Continue reading
Tagged , , ,

A compact Arduino, si5351 VFO with Keyer and OLED display

The remarkable compact transceivers of Peter DK7IH inspired me to dream up a compact transceiver of my own. This project would be an experiment on a shirt-pocket scale — not as dense as some of Peter’s rigs, but small on my scale. Starting with the PLL VFO/controller along the familiar lines of Raduino (Arduino Nano and si5351), I sketched out a physical design, and it became clear that the display choice would dictate the size of this module. Where small displays are concerned, there’s only one option … OLED.

Continue reading

Tagged , , , , , , , ,

Scratch-built 8-band HF/6m transceiver (EI9GQ) – Part 1 Receiver

Eamon EI9GQ’s book (‘Building a Transceiver’, RSGB 2018) started me down the path of another modular transceiver project. For this build I wanted to continue working with surface mount but without the compulsion to pack it all in tight. More space and the freedom to replace a module later. It would be a Shack Sloth rig (a base station), not a Summit Prowler, so the space, weight and power budget shackles fell off from the start.

Continue reading

Tagged , , , , ,

Arduino GPS experiment for SOTA

How could a GPS unit integrated with a SOTA transceiver assist in activations? I’ve been turning that thought over for a while now after seeing David VK5KK’s GPS and Arduino based grid square locator (posted to the ‘VK Homebrew’ group on facebook).   The ready availability of cheap GPS units with a simple serial interface makes the option straight-forward.  As my homebrew rigs are using Arduino Nanos and si5351 breakout boards, the GPS is just another (serial) attachment.

Continue reading

Tagged , , , , , ,

My second homebrew Arduino/si5351 Digital VFO-Controller

Back in February 2017 I scratch-built my first Arduino and si5351 VFO. Here’s my second one. It is a generic Nano/si5351 module wired up to Farhan’s Raduino circuit. The si5351 is on an Adafruit breakout which includes a 3.3v regulator and crystal. Everything else is as per Raduino other than the presence of a second 7805 regulator for the LCD (and a 1000uF electrolytic storage capacitor) which will allow testing of Pavel CO7WT’s scheme for saving the VFO frequency to the Arduino’s EEPROM when the power drops.

Continue reading

Tagged , , , , ,
Shack of VK2KMI

Ham Radio Blog of VK2KMI

Ham Historian

A passionate amateur looks at Melbourne history

R.IT

My journey of repairing and recycling anything I put my hands on that I believe is still useful. Not just hardware, but including software with relevant content and issues in the field of Cyber Security, Vulnerability Scanning and Penetration Testing.

G4YDM Ham-Radio and SWL news

Radio craft, homebrew, QRP/SOTA, AM

VK1DA.blog

Amateur radio experiences with VK1DA

Tj Lab

信号処理とラジオ

The Microscopic New Yankee Make Shop

Bits of technology and illogic by WA2MZE

Paul Gacek

W6PNG/M0SNA

NewURL: https://dk7ih.de

This blog is no longer in use!